A new Furostanoside from Asparagus filicinus

Yan Fang LI², Li Hong HU¹*, Feng Chang LOU², Jian Rong HONG¹

¹Chinese National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203 ²Department of Phytochemistry, China Pharmaceutical University, Nanjing 210038

Abstract: A new furostanoside, aspafilioside D (1) has been isolated from the root of *Asparagus filicinus*. Its structure was determined by spectral and chemical methods.

Keyword: Aspafilioside D, Asparagus filicinus, Liliaceae.

Asparagus filicinus Bunch. -Ham (Liliaceae) has been reported for its medicinal utility. The root is considered to be a tonic astringent in India, and used for the treatment of bronchitis, pneumonitis and cough as a folk medicine of China^{1,2,3}. A new oligofurostanoside, named aspafilioside D, was obtained from the root of this plant. This paper deal with the structure elucidation of this compound.

Aspafilioside D (1) was isolated as amorphous powder; mp193-195°C; $[\alpha]_{D}^{20}$ -13 (*c* 0.27, MeOH); UV (MeOH) λ_{max} (log ε): 223 (4.06), 227 (3.61) nm; gave a red Ehrlich reaction characteristic of furostanolglycoside and shows no absorption of IR spectrum (3415, 2927, 1635, 1452, 1378, 1152, 1041cm⁻¹) corresponding to spirokatanol saponin. The ESI-MS (-) showed a peak at m/z 1021.9, corresponding to [M (C₄₉H₈₂O₂₂)-H]⁻. On the basis of its ¹H- and ¹³C-NMR data, the aglycone of 1 was determined as sarsasapogenin. The NMR and ESI-MS data indicated that 1 contained two pentose and two hexose unit. Hydrolysis of 1 yielded glucose and xylose. The β -configuration at the anomeric center of the glucopyranosyl moiety was suggested by the large coupling $(J_{\text{H1-H2}}=7.5, 7.6\text{Hz})$ of the anomeric proton in the ¹H-NMR spectrum. The xylosyl group was concluded to be in the β -configurations (J_{H1-H2} =6.6, 7.7Hz), ¹H- and ¹³C-NMR chemical shifts were assigned (**Table 1** and **2**) from a combination of 2D homonuclear ¹H-¹H (COSY, TOCSY) and heteronuclear ¹³C-¹H (HMQC, HMBC) correlations that allowed unambiguous identifications of the aglycone and the various sugar moieties. The observation of cross-peaks in the HMBC spectrum arising from through-bond couplings over three bonds between the anomeric protons and carbons in adjacent systems allowed the determination of the sugar sequence and the aglycone linkage positions.

^{*}E-mail: simmhulh@mail.shcnc.ac.cn

Yan Fang LI et al.

Figure 1 Structure of Compound 1

Table 1 NMR data for compound 1 (δ in C₅D₅N ppm, J Hz)

Position	$^{1}\mathrm{H}$	¹³ C	Position	$^{1}\mathrm{H}$	¹³ C
1	1.85 m	30.5	3-O-Glc		
2	1.95 m	27.1	G_1	4.95 d (7.5)	101.0
3	β 4.40 m	74.9	G_2	4.23 m	82.3
4	1.95 m	31.0	G_3	4.35 m	76.8
	1.60 m		G_4	4.37 m	80.7
5	2.20 m	37.4	G ₅	3.90 m	76.7
6	1.35 m	27.3	G _{6a}	a 4.55 m	61.8
	1.25 m		G_{6b}	b 4.62 m	
7	1.25 m	27.3	2' Xyl		
8	1.58 m	35.9	X_1	5.38 d (6.6)	106.5
9	1.85 m	40.6	X_2	4.13 m	75.5
10		35.6	X_3	4.32 m	77.9
11	1.22 m	21.5	X_4	4.35 m	71.4
12	1.38 m	40.7	X_{5a}	a 4.55 m	67.6
13		41.6	X_{5b}	b 3.85 m	
14	1.15 m	56.7	4'Xyl		
15	2.15 m	32.7	X_1'	5.15 d (7.7)	105.7
	1.54 m		X_2'	4.08 m	75.2
16	5.10 d (7.3)	81.6	X3'	4.25 m	71.1
17	2.10 m	64.2	X_4'	4.35 m	76.8
18	0.99 s	17.0	X_{5a}'	a 3.75 m	67.5
19	1.10 s	24.2	X_{5b}'	b 3.82 m	
20	2.35 m	41.0	26-O-Glc		
21	1.42 d (6.5)	17.1	G_{l}'	4.88 d (7.6)	105.3
22		111.1	G_2'	4.12 m	75.5
23	2.38 m	36.5	G ₃ '	4.27 m	78.5
24	2.18 m	28.6	G_4	4.32 m	72.0
	1.80 m		G5'	4.05 m	78.7
25	2.05 m	34.7	\mathbf{G}_{6a}'	a 4.45 m	63.1
26	3.60 t (8)	75.7	G_{6b}	b 4.65 m	
27	1.14 d (6.5)	17.8			

Proton	H-H COSY	HMQC (^{13}C)	TOCSY	HMBC (^{13}C)
3-O-Glc				
G_1	G_2	G_1	$G_2, G_3, G_4, G_5, G_{6a}, G_{6b}$	C-3
G_2	G_1, G_3	G_2	G_1, G_3, G_4, G_5	G_1
G ₃	G_2	G_3	$G_1, G_2, G_4, G_5, G_{6a}, G_{6b}$	
G_4	G_5	G_4	$G_1, G_2, G_3, G_5, G_{6a}, G_{6b}$	G_{3}, G_{5}
G5	G4, G6a	G5	$G_1, G_2, G_3, G_4, G_{6a}, G_{6b}$	G_6
G _{6a}	G5	G_6	G_1, G_3, G_4, G_5	
G _{6b}		G_6	$G_{1}, G_{2}, G_{3}, G_{4}$	
2'-Xyl				
X_1	X_2	X_1	X2, X3, X4, X5a, X5b	G_2
X_2	X_1, X_3'	X_2	$X_1, X_3, X_4, X_{5a}, X_{5b}$	X_1
X_3	X_2	X_3	X1, X2, X4, X5a, X5b	X_2
X_4	X _{5b}	\mathbf{X}_4	X1, X2, X4, X5a, X5b	X_5
X_{5a}	X_{5b}	X_5	$X_1, X_2, X_3, X_4, X_{5b}$	X_4
X_{5b}	X_{5a}, X_4	X_5	X1, X2, X3, X4, X5a	
4'-Xyl				
X_1'	X_2'	X_1'	$X_{2}', X_{3}', X_{4}', X_{5a'}$	G_4
X_2'	$X_{1'}, X_{3'}$	X_2'	$X_1', X_3', X_4', X_{5a}'$	
X_3'	$X_{2'}, X_{4'}$	X_3'	$X_1', X_2', X_4', X_{5a}', X_{5b}'$	X ₂ ′,
X_4'	$X_{3}', X_{5a'}, X_{5b'}$	X_4'	$X_1', X_2', X_3', X_{5a}', X_{5b}'$	X_{3}', X_{2}'
X_{5a}'	X_4'	X_5'	X_1', X_2', X_3', X_4'	
X_{5b}'	X_4'	X_5'	X_1', X_3', X_4'	
26-O-Glc				
G_1'	G_2'	G_1'	$G_2', G_3', G_4', G_5', G_{6a}', G_{6b}'$	C-26
G_2'	G_1', G_3'	G_2'	$G_1', G_3', G_4', G_5', G_{6a}', G_{6b}'$	G_1'
G ₃ ′	G_4'	G ₃ ′	$G_1', G_4', G_5', G_{6a}', G_{6b}'$	
G_4'	G_{5}', G_{3}'	G_4'	$G_1', G_2', G_3', G_5', G_{6a}', G_{6b}'$	G_{3}', G_{5}'
G5'	G_{6a}', G_4'	G5'	$G_1', G_2', G_3', G_4', G_{6a}', G_{6b}'$	G_6'
G _{6a} ′	G5'	G_6'	$G_1', G_2', G_5', G_{6b}'$	
G_{6b}		G_6'	$G_1', G_2', G_3', G_4', G_5', G_{6a}'$	

Table 2 Summary of the two-dimensional NMR correlations of 1 (δ in C₅D₅N ppm, *J* Hz)

Hence, cross-peaks between H-1 (δ 4.95) and C-1 (δ 101.0) of glucose and C-3 (δ 74.9) and H-3 (δ 4.40) of the aglycone, respectively, indicated that the glucose moiety was attached at C-3 of the aglycone. Cross-peak between H-1 (δ 4.88) and C-1 (δ 105.3) of glucose and C-26 (δ 75.7) and H-26 (δ 3.60) of the aglycone, indicated that another glucose moiety was attached at C-26 of the aglycone. Cross-peaks between H-1 (δ 5.38) of xylose and C-2 (δ 82.3) of glucose, H-1 (δ 5.15) of another xylose and C-4 (δ 80.7) of glucose indicated that **1** consisted of a glucose unit bearing one xylose at C-2 and another xylose at C-4. Consequently, The structure of **1** was elucidated as (25s) -5 β -furost-3 β , 22, 26-triol-3-O- β -D-xylopyranosyl (1 \rightarrow 2) [β -D-xylopyranosyl (1 \rightarrow 4)]-D- glucopyranoside -26-O- β -D-glycopyranoside.

Acknowledgment

This work was supported by the National Natural Science Fundation of China (30100229) and Science and Technology Development Fundation of Shanghai, China (01QB14051), and these supports are gratefully acknowledged.

Yan Fang LI et al.

References

- 1. Dictionary of Chinese Medicinal Herbs, Shanghai Scientific and Technologic Publisher, Shanghai, **1997**, P.7144.
- 2. Y. Ding, C. R. Yang, Yao Xue Xue Bao(ActaPharmaceutica Sinica, in Chinese), 1990, 25 (7), 509.
- 3. K R. Kirtikar, and B. D. Basu, *Indian Medicinal Plants (Period, Expt., Delhi)*, **1975**, *Vol. IV*, 2498.

Received 22 February, 2002 Revised 1 January, 2003

382